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Abstract- The distortions induced by inter-modulations 

and cross-modulations in concurrent dual-band power 
amplifiers (PAs) are evidenced and characterized using 
multi-tone signals. Given the presence of cross-modulations, 
a comprehensive extended real-valued time-delay neural 
network (extended-RVTDNN) is proposed to model the 
nonlinear behavior of concurrent dual-band Pas. Two 
three-carrier WCDMA signals are applied to a dual-band 
Doherty PA prototype for modeling verification. The 
experimental results show that the proposed model 
approximates the PA with normalized mean square errors 
(NMSEs) of -38.48dB and -35.42dB in the lower and upper 
bands, respectively. Compared with the conventional 
single-band RVTDNN, this new method achieves an 
improvement in accuracy of more than 10dB.  

Key words-Power amplifiers, memory effects, cross 
modulation, neural networks 

I. INTRODUCTION 

With the rapid expansion of modern high-speed wireless 
communications, mobile communication systems should 
accommodate many standards simultaneously, especially for 
the upcoming long-term evolution advanced (LTE-Advanced) 
system. Corresponding to this trend, radio frequency (RF) 
components are often required to operate in multiple modes 
and support compatibility across different systems [1]. To 
satisfy this requirement, multiband power amplifiers (PAs) will 
be highly desirable in future wireless communication systems. 
Many studies on the design of concurrent dual-band PAs have 
been published recently.  

The digital pre-distortion (DPD) technique is a widely 
accepted linearization approach that provides high accuracy in 
synthesizing the pre-distortion function and leads to a higher 
efficiency by allowing PAs to operate near saturation. DPD 
relies on the introduction of an exact inverse nonlinear 
pre-distorter before the PA to compensate for nonlinearity. 

Many nonlinear models have been proposed for the 
characterization of PAs, including the memory polynomial 
model, the Volterra model, Wiener and Hammerstein models, 
and neural networks (NNs) models. In particular, NN models, 
with their excellent approximation capability, are becoming an 
increasingly attractive solution for PA behavioral modeling. 
NN models have been mostly used to successfully model 
single-band PAs [2]. To the best of our knowledge, there is no 
precedent NN model that has been applied for the behavioral 
modeling in concurrent dual-band PAs. 

On account of the distortion caused by cross-modulations, an 
extended real-valued time-delay NN (RVTDNN) model is 
proposed to approximate the nonlinear behavior of concurrent 
dual-band PAs. The proposed model is trained and validated 
with different segments of the overall test data, and the 
experimental results demonstrate the advantage of this method. 

II. NONLINEARITY CHARACTERIZATION OF  
CONCURRENT DUAL-BAND PAS 

As first shown in [3], in the modeling of the concurrent 
dual-band PA with a simple fifth-order memory-less nonlinear 
model, the output signals around the carrier frequencies in the 
dual bands can be derived. In [3], both input signals contribute 
to the nonlinearities of the output signals in dual bands are 
indicated. For these terms to be evidenced and the nonlinear 
behavior of concurrent dual-band PAs to be identified, two 
2-tone signals are used for characterization [4]. As shown in 
Fig.1, each band has a symmetrical 2-tone signal around its 
central frequency; and the frequency spacing in the lower and 
upper bands are set to 1 MHz and 2.4 MHz, respectively. 

The measured output spectra of a dual-band PA prototype [5] 
in concurrent and single-band modes are compared in Fig.1. It 
is not difficult to determine that many new modulation 
products occur in the spectrum of concurrent mode, which do 
not exist in the single-band mode. According to (1) and (2), we 
can figure out that these new terms are induced by the 
cross-modulation of the signals in different bands. The 
produced inter-modulations and cross-modulations are as 
labeled in Fig.1. For simplicity, only productions up to the 
third order are marked. 
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Fig. 1. Measured output spectra: (a) lower band and (b) upper band 
For the purpose of wideband and dynamic behavioral 

modeling, memory effects cannot be neglected. Following the 
definition in [6], the intensity of memory effects is quantified 
by the difference between the modulation products on both 
sides of the carrier frequency. We define the memory effect 
metrics as the imbalance between the right and left modulation 
products. In frequency sweeping scheme, the inter-modulation 
and cross-modulation products do not overlap in the output 
spectrum and the cross-modulations experience significant 
memory effects, especially the far cross-modulations. This 
effect is attributed to the expansion of the frequency spacing, 
since the memory effects of PAs are associated with the 
bandwidth of the input signal [6]. 

III. EXTENDED-RVTDNN FOR DUAL-BAND PA 

A comprehensive survey on different NN models for PA 
modeling can be found in [2]. In this paper, a brief review is 
presented. First, a single-input, single-output, feed-forward NN 
uses complex input and output signals, which results in high 
calculation complexity. Uncoupled NNs that model output 
amplitude and phase (or I and Q components) separately are 
limited by asynchronous convergence. The real-valued 
feed-forward neural network (RVFFNN) model, which takes 
advantage of the I and Q components in the baseband signals, 
reduces the complexity of a neural network. However, with the 
continuously growing modulation bandwidth of signals, no 
paper has yet considered the memory effects with RVFFNN. A 
real-valued time-delay neural network (RVTDNN), based on a 
feed-forward neural network (FFNN), has been well 
established for wideband PA modeling. It models memory 
effects successfully by importing tapped delay lines (TDLs) in 
the baseband inputs [2].  

Concurrent dual-band PAs exhibit more complex behavior 
than that of single-band PAs; and, the distortions caused by 
cross-modulations should be taken into account. Certainly, the 
memory effects of all products should also be included. To 
meet this requirement, an extended real-valued time-delay 
neural network (extended-RVTDNN) is proposed to 
approximate the nonlinear behavior of concurrent dual-band 
PAs, the topology of which is illustrated in Fig.2. To fully 
consider the cross-modulations, two single-band RVTDNNs 
are combined with mutual coupling; thus, the conventional 

model is extended to a new neural network with four inputs 
and four outputs. Due to the coupling of two single-band NNs, 
the cross-modulation products of the two input signals in (1) 
and (2) can be automatically integrated into the NN. As 
highlighted in the shadowed area of Fig.2, the conventional 
single-band RVTDNN can be regarded as a special case, with 
the remaining network idle. 
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 Fig. 2. Block diagram of extended-RVTDNN for dual-band PA behavioral    
modeling 

Since the inter-modulation and cross-modulation products 
both contribute to the nonlinearity of the PA, the outputs in 
dual bands are all functions of the two input signals: 
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where 1p , 1q , 2p  and 2q  are the memory depths of the 
input vectors, and functions ig  are modeled by the proposed 
extended-RVTDNN.  

Apparently, the output signal in each band is not only the 
response of the input signal at its own frequency, but also the 
contribution of the two signals in dual bands. The delayed 
response is achieved by using the delay operator. The TDLs 
store values from the previous time step, which can be used in 
the current step. The outputs can be expressed as: 
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Where, ( ) ( )( )1 1 1, 2,k kQ n f net n k m= =     (7) 
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The chosen activation function for the hidden layer is the 
tansig function given as: 
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To implement this NN model, the synaptic weights in 
(7)-(10) have to be extracted based on tested data. In order to 
guarantee high modeling accuracy and low computation 
complexity, the training algorithm for the NN needs to be 
selected carefully. In [2], different training algorithms for NNs 
were compared in terms of accuracy and speed, and the 
Levenberg-Marquart (LM) algorithm [7] outperformed the 
others, due to its fast convergence and good accuracy. As a 
result, the LM algorithm is chosen for NN training in this 
study.  

IV. EXPERIMENTAL RESULTS 

The details of the applied concurrent dual-band PA 
prototype for validation can be found in [5].  

Fig.3 presents a test bed united by two identical and phase 
coherent vector signal generators (ESG 4438C) with an 
external oscillator, spectrum analyzer (E4440A), 89600 vector 
signal analysis software and MATLAB. The third signal 
generator is used as an external oscillator to synchronize the 
two signal generators, which can guarantee high 
synchronization accuracy. The dual-band PA is excited with a 
WCDMA101 signal (a three-carrier WCDMA signal with the 
center carrier turned off) in the lower band and a WCDMA111 
signal (a three-carrier wideband code division multiple access 
signal with all three carriers present) in the upper band, 
respectively.  
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Fig. 3. Test bed for behavioral modeling 

The two signal generators act as synthesizers and 
up-converters of the baseband signals to their respective RF 
frequencies, where they are combined together using a 
Wilkinson power combiner. The combined signal drives a 
wideband pre-amplifier PA (AR 5S1G4) cascaded with a 
concurrent dual-band Doherty PA. Finally, the output signal is 

captured by the Agilent PSA E4440A spectrum analyzer and 
vector signal analyzer (VSA89000). The PAPR of the two 
signals before pre-distortion is around 10.5 dB, their chip rate 
is 3.84 Mc/s, and the peak output powers in dual bands are 
both kept at 37 dBm, which operates near saturation. The PA is 
operated at 880 MHz and 1978 MHz for the measurements. 

The model training and validation is implemented in a 
MATLAB environment. Two different segments with 4000 
data points in each band are selected from the overall collected 
test data and used for training and validation. The selected 
segments should contain the fast transition states of the 
waveform as much as possible, in order to improve the 
modeling accuracy. After careful comparative studies, it was 
determined that a single hidden layer is sufficient for the 
modeling; and, the extended-RVTDNN model uses 30 neurons 
in the single hidden layer and 3 taps in four input TDLs.  

Fig.4 shows the validated results of the I and Q components 
in the time domain. The predicted and measured results agree 
well in all four components. It demonstrates that the 
extended-RVTDNN model for concurrent dual-band PA 
accurately approximates the PA. A comparison of the output 
spectra of the single-band RVTDNNs without mutual coupling, 
the extended-RVTDNN and the real measurement results is 
illustrated in Fig.5. It can be seen that the proposed 
extended-RVTDNN achieves higher accuracy than the 
single-band RVTDNN, due to the integration of the additional 
distortions induced by the cross-modulations.  
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Fig. 4. Validation results of I and Q components 
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Fig. 5. Comparison of output spectrum between the single-band RVTDNN, 
extended-RVTDNN and the measured data of three-carrier WCDMA signals. 

To evaluate the accuracy of the proposed model, the 
normalized mean square errors (NMSE) for each band is 

summarized in Table I, which shows that the 
extended-RVTDNN achieves an improvement in modeling 
accuracy of more than 10dB. 

TABLE I. 
 SUMMARY OF NMSE 

Frequency 
(MHz) Signal 

NMSE (dB) 
Single-Band 
RVTDNN 

Extended-RVTDNN 

880 WCDMA101 -27.90 -38.48 
1978 WCDMA111 -21.91 -35.42 

V. CONCLUSION 

In this paper, the distortions induced by inter-modulations 
and cross-modulations in concurrent dual-band PAs are both 
taken into consideration. To model the behavior of the 
concurrent dual-band PA, an extended real-valued time-delay 
neural network (RVTDNN) is proposed to predict the 
nonlinearity and memory effects of the concurrent dual-band 
PA. The dual-band PA is driven with three-carrier WCDMA 
signals, and good agreement is shown between the 
extended-RVTDNN model output and the measurement results 
in the time and frequency domains. The proposed model 
achieves NMSEs of -38.48dB and -35.42dB for the lower and 
upper bands, respectively. Compared with the conventional 
single-band RVTDNN, the proposed method achieves an 
improvement in modeling accuracy of more than 10dB. 

ACKNOWLEDGMENT 

This work was supported by the National Science and 
Technology Major Project of the Ministry of Science and 
Technology of China under Grant No. 2010ZX03007-003 and 
2012ZX03001009-003, Agilent Technologies Foundation 
(2414-CN11). 

REFERENCES 
[1]  R.-C. Hua, C.-F. Chou, S.-J. Wu, T.-G. Ma, “Compact multiband planar 

monopole antennas for smart phone applications,” IET Microwaves, 
Antennas & Propagation, Vol. 2, No. 5, May 2008, pp. 473–481. 

[2] M. Rawat, K. Rawat, Fadhel M. Ghannouchi, “Adaptive Digital 
Predistortion of Wireless Power Amplifiers/Transmitters Using Dynamic 
Real-Valued Focused Time-Delay Line Neural Networks,” IEEE 
Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, Jan. 
2010, pp. 95–104. 

[3] Seyed Aidin Bassm, “Advanced Signal Processing Techniques for 
Impairments Compensation and Linearization of SISO and MIMO 
Transmitters,” Doctor Dissertation, University of Calgary, Sep. 2010. 

[4]  David H. Wisell, Bjorn Rudlund, Daniel Ronnow, “Characterization of 
memory effects in power amplifiers using digital two-tone 
measurements,” IEEE Transactions on Instrument and Measurement, 
Vol. 56, No. 6, Dec. 2007, pp. 2757–2766. 

[5]  Xiang Li, Wenhua Chen, Zhijun Zhang, Zhengfe Feng, Xinyi Tang, 
Koen Mouthaan, “A Concurrent Dual-Band Doherty Power Amplifier,” 
Asia-Pacific Microwave Conference, Yokohama, Japan, Dec. 2010, pp. 
654–657. 

[6]  Hyunchul Ku, Michael D. McKinley, J. Stevenson Kenny, “Quantifying 
memory effects in RF power amplifiers,” IEEE Transactions on 
Microwave Theory and Techniques, Vol. 50, No. 12, Dec. 2001, pp. 
2843–2849. 

[7]  R. Battiti, “First- and Second-Order Methods for Learning: Between 
Steepest Descent and Newton’s Method,” Neural Computation, Vol. 4, 
No. 2, Mar. 1992, pp. 141–166. 

830 840 850 860 870 880 890 900 910 920 930
-20

-10

0

10

20

30

40

50

60

Frequency(MHz)

S
pe

ct
ru

m
(d

B
m

)

 

 
Extended-RVTDNN
Single-Band RVTDNN
Measured

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
-20

-10

0

10

20

30

40

50

60

Frequency(MHz)

S
pe

ct
ru

m
(d

B
m

)

 

 
Extended-RVTDNN
Single-Band RVTDNN
Measured


